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• Multi-branch filter bank approach 

• Adjustable out-of-band radiation 

• Lesser CP compared to OFDM 

• Simple Equalization  Performance is as good as OFDM 

• Reconfigurable RF front – end for flexibility of the architecture 

 

• Fragmented White Space 

• Flexible MC approach 

• Extremely low out-of-band radiation 

• Digital Implementation 

       

Frequency

. . .

TV Bands

Power Level ORData Carriers

TV Signal

Frequency

P
S

D

Motivation for looking Beyond OFDM 

FBMC, GFDM and IA-PFT 

3 



• An OFDM-based-transmitter capable of suppressing out-of-band emission for 
opportunistic spectrum access in White Space 
 

• Parallel concatenation of partitioned frequency-domain (Cancellation Carriers) 
and time-domain (windowing) processing 
 

• 6-12 dB of suppression gain in power spectral density 

IA-PFT: Interference Avoidance transmission by Partitioned Frequency- and Time-domain processing 

     Interference Avoidance Transmission (IA-PFT) 

Power spectral density IA-PFT transmitter 
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• IA-PFT achieves almost the same BLER as those of conventional CC and TW 
schemes in multipath fading channels  
 

• Negligible level of increase in PAPR confirmed 

CC: Cancellation Carrier    TW: Time Windowing 

IA-PFT: BLER and PAPR Performance 

PAPR performance (QPSK) 
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Power spectrum density of IA-PFT with variable Q 



• FBMC / OQAM OFDM is being considered 

• Motivations for FBMC have been presented 

• Frequency transition bands are sharper 

• Benefits in terms of spectral efficiency have been measured 

• Larger complexity of implementation 

• FBMC DSP Architecture  
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OFDM

CE-OFDM

DFTS-OFDM

FBMC

Structure of the FBMC modulation and demodulation 



Channel equalization in FBMC 
 

• For small delay spread: channel equalization using MMSE channel 

equalization 

• Larger delays introduce error floor in the BER 

• Novel iterative equalization scheme for FBMC to achieve better performance 
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FBMC - no multipath

OFDM - no multipath

FBMC - multipath with MMSE equalization

OFDM - multipath with MMSE equalization
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Standard 
Spectral Efficiency Gain relative to OFDM 

Frequency Domain Time Domain Total Gain 

DVB-T 10 % 3 % 13 % 

IEEE 802.11a/g 3.8 % 15.8 % 19.6 % 

Power spectral density comparison in IEEE 802.11a/g FBMC and OFDM MMSE, AWGN and multipath channels 



Generalized Frequency Division Multiplexing 

...

n iN

sampling
receive

filter
Digital Subcarrier

down-conversion

...
detection

...

0[ ]y n

[ ]Rg n

1[ ]Ky n

 0,d i

 1,d K i

binary

data
-CP

n iN[ ]Rg n

( 1)
2

K n
j

Ne





0
2

n
j

Ne


remove

cyclic

prefix

equalization

[ ]y n

..
.

Digital subcarrier 

upconversiontransmit

filter

symbol

mapping

..
.

1[ ]Kx n

[ ]x n

[ ]n n

( 1)
2

K n
j

Ne




 0,d i 0[ ]x n

[ ]T ng iN

0
2

n
j

Ne


binary

data
CP

add

cyclic

prefix

[ ]T ng iN

 1,d K i

AWGN

channel



Tail-biting CP 

• In OFDM we have 1 CP for 

every OFDM sym Block 

 

• In GFDM, we have for M-

sym blocks, 1 CP 

 

• If we have frequency 

selective Channel, the 

influence of CP on  
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GFDM performance 
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Flexible RF Transceiver Front-End 

Main objectives:  

• Flexible spectrum exploitation 

• Supporting spectrum aggregation 
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Architecture of the multi-band RF receiver front-end 

Frequency selection and conversion for spectrum aggregation 



Conclusion 

• State of the art architectures have been studied. 

• Parameter and system requirements have been researched. 

• A flexible PHY design is being researched; with several 

options identified. 

• Simulations going on in FBMC, GFDM, IA-PFT etc. etc. 

• Performance of these PHY techniques are being studied and 

simulated. 

• Reconfigurable RF front-end is being researched. 
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